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Introduction


About Alloy

Alloy is a tool for analyzing systems and seeing if they are designed correctly. You can read more here [http://www.alloytools.org/] and download it here [http://alloytools.org/download.html].




About This Guide

This is my tentative proposed documentation for the Alloy language.

This is not the official Alloy documentation. It’s a staging ground for material that’s intended to become official documentation, but for now I’m writing this independently, not as part of the alloy board.

This is a work in progress. This documentation is incomplete and changes may be made. There are also a lot of things that still need to be added.

This is meant as a reference, not a tutorial.

This is not comprehensive. Certain things are intentionally excluded, like bitshift operators, specific internal modules, anonymous predicates, and Alloy 3 legacy syntax. Generally these are things that I personally believe are only useful in very specific niche cases, and otherwise serve to confuse things.




How to Read

I’ve added commentary in the markup of the pages that is invisible in
the final output. If you see something

.. like this





Then it will not be rendered. If I used a special run predicate to
generate a particular visualization, I put it in a comment.

Anything with a [⋇] is an advanced topic and unecessary to learn if you’re just a beginner.

Issues with the documentation can be raised here [https://github.com/hwayne/alloydocs].




About the Author

I’m Hillel. I also wrote a guide to TLA+ [https://www.learntla.com] and have a blog [https://www.hillelwayne.com] and a twitter [https://twitter.com/hillelogram].
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Signatures

A signature expresses a new type in your spec. It can be anything
you want. Here are some example signatures:


	Time


	State


	File


	Person


	Msg


	Joke


	Pair




Each model will have some number of each signature, called atoms.
Take the following spec:

sig A {}





The following would be a valid model:

[image: ../_images/sig-a.png]
Here we have two atoms A$1 and A$0. Both count as instances of the A signature. See visualizer for more on how to read the visualizations.

Usually we care about the relationships between the parts of our
systems. We don’t just care that there are people and accounts, we care
which people have which accounts. We do this by adding relations
inside of the signature body.

sig Person {}
sig Car {}

sig Registration {
  owner: Person,
  car: Car
}





This defines a new Registration type, where each Registration has an
owner, which is a Person, and a car, which is a Car. The comma
is required.

[image: ../_images/sig-with-relations.png]

Tip

Extra commas are ignored. So you can write Registration instead like this:

sig Registration {
   , owner: Person
   , car: Car
}








Relations

The body of a signature is a list of relations, which show how the
signatures are connected to each other.

Relations are separated by a comma. The list can also start and end with
a comma. Standard convention is to prefix every relation with a comma.

Relations can refer to the same signature. This is valid:

sig Node {
  , edge: set Node
}





[image: ../_images/self-relation.png]
Alloy can generate models where a relation points to the same atom. For
this reason we often want to add contraints to our model, such as
Facts or Predicates.


Note

Each relation in the body of a signature actually represents a
relation type. If we have:

sig A {r: one B}





Then r is set of relations in A -> B. See Sets and Relations for more information.



Different signatures may have relationships with the same name as long as the relationship is not ambiguous.


Multiplicity

Each relation has a multiplicity, which represents how many atoms it
can include. If you do not include a multiplicity, it’s assumed to be
one.


one

The default. r: one A states that there is exactly one A in the
set.

sig Key {}

sig Lock {
  , key: one Key
}





This says that every lock has exactly one Key. This does not guarantee
a 1-1 correspondence! Two locks can share the same key.

[image: ../_images/one-key.png]
If no multiplicity is listed, Alloy assumes to be one. So the above
relation can also be written as key: Key.




lone

r: lone A states that either there is one A in the set, or that
the set is empty. You can also think of it as “optional”.

sig Directory {
  , parent: lone Directory
}





This says that every directory either has one parent, or it does not
have a parent (it’s a root directory).

[image: ../_images/lone-dir.png]



set

r: set A states that there can be any number of A in the relation.

sig User {}
sig Region {
  servers: set User
}





[image: ../_images/set-user.png]



some

r: some A states that there is at least one A in the relation.

sig Author {}

sig Book {
  by: some Author
}





[image: ../_images/some-author.png]



disj

disj can be prepended to any multiplicity to gaurantee that it will be disjoint among all atoms. If we write

sig Lock {}
sig Key {
  lock: disj one Lock
}





Then every key will correspond to a different lock. If we instead write

sig Lock {}
sig Key {
  locks: disj some Lock
}





Then every key will correspond to one or more locks, but no two keys will share a lock.




seq

See here [http://alloytools.org/quickguide/seq.html] for more info.






Field Expressions

A field can be a simple expression over other signatures.

sig Resource {
  permissions: set (User + Group)
}





In addition to full signatures, the expression may contain this, which refers to the specific atom itself.

sig Node {
  -- no self loops
  , edge: set Node - this
}





A dependent field is one where the expression depends on the values of other fields in the atom. The dependencies must be fields defined either in the signature or its supertype.

sig Item {}

sig Person {
  , favorite: Item
  , second: Item - favorite
}








Multirelations

Signatures can have multirelations as fields:

sig Door {}
sig Card {}

sig Person {
  access: Card -> Door
}





In this case access is a ternary relationship, where each element of
access is a relation of form Person -> Card -> Door. Using the dot operator, if access = P -> C -> D, then P.access = C -> D and access.D = P -> C.

Multirelations have a special kind of multiplicity:

r: A m -> n B





This says that each member of A is mapped to n elements of B,
and m elements of A map to each element of B. If not specified,
the multiplicities are assumed to be set.

As an aide, use the following table:








	m

	n

	Meaning





	set

	set

	No restrictions



	set

	some

	Each A used at least once



	set

	one

	Each A is mapped to exactly one B (total
function)



	set

	lone

	Each A is mapped to at most one B
(partial function)



	some

	set

	Each B mapped to at least once



	some

	some

	Every A mapped from and every B mapped
to



	some

	one

	Each A used exactly once, each B used at
least once



	some

	lone

	Each A used at most once, each B used at
least once



	one

	set

	Each B used exactly once, no other
restrictions (one A can map to two B
atoms)



	one

	some

	Each B used exactly once, each A used at
least once



	one

	one

	Only satisfiable if #A = #B, bijection



	one

	lone

	At most #A arrows, exactly #B arrows,
each A used at most once



	lone

	set

	Each B used at most once



	lone

	some

	Each A used at least once and each B
used at most once



	lone

	one

	Each A used exactly once, each B used at
most once



	lone

	lone

	Each A used at most once, each B used at
most once






Not all multiplicities will have valid models. For example,

sig A {}
sig B {}
one sig C {
  r: A one -> one B
}

run {} for exactly 3 A, exactly 2 B





Since r must be 1-1, and there’s different numbers of A and B sigs, nothing satisfies this model.

Multirelations can go higher than ternary using the same syntax, but this is generally not recommended.






Signature Multiplicity

In addition to having multiplicity relationships, we can put
multiplicities on the signatures themselves.

one sig Foo {}
some sig Bar {}
//etc





By default, signatures have multiplicity set, and there may be zero
or more in the model. By making the signature one, every model will
have exactly one atom of that signature. By writing some, there will
be at least one. By writing lone, there will be zero or one.




Subtypes

We can make some signatures subtypes of other signatures.


in

Writing sig Child in Parent creates an inclusive subtype: any
Parent atoms may or may not also be a Child. This is also called a
“subset subtype”.

sig Machine {}

sig Broken in Machine {}
sig Online in Machine {}





In this case, any Machine can also be Broken, Online, both, or neither.


+

A single inclusive subtype can be defined for many parent signatures. We
can do this by using the set union operator on the parent signatures.

sig Bill, Client {}

sig Closed in Bill + Client {}










extends

Writing sig Child extends Parent creates a subtype, as with in.
Unlike in, though, any Parent atom can only match up to one
extension.

sig Machine {}

sig Server extends Machine {}
sig Client extends Machine {}





In this case, any Machine can also be a Server, a Client, or neither,
but not both.

Something can belong to both extend and in subtypes.

sig Machine {}
sig Broken in Machine {}

sig Server extends Machine {}
sig Client extends Machine {}





A Machine can be both a Server and Broken, or a Client and Broken, or just one of the three, or none at all.


abstract

If you make a signature abstract, then all instances of the
signature will be extensions, and there will be no signatures that are
still the base.

abstract sig Machine {}
sig Broken in Machine {}

sig Server extends Machine {}
sig Client extends Machine {}





Here any machine must be either a Server or a Client. They still may
or may not be Broken.


Warning

If there is nothing extending an abstract signature, the abstract is ignored.




Tip

You can place multiple signatures on the same line.

sig Server, Client extends Machine {}












Subtypes and Relationships

All subtypes are also their parent type. So if we have

sig B {}
sig C in B {}

sig A {
 , b: B
 , c: C
}





Then the b relation can include A -> C, but c cannot include A -> B.




Child Relations

Children automatically inherit all of their Parent fields, and also can define their own fields. We can have:

sig Person {}
sig Account {
  , person: Person
}

sig PremiumAccount in Account {
  , billing: Person
}





Then all Account atoms will have the person field, while all PremiumAccount atoms will have both a person field and a billing field.


Note

This also applies to Implicit Facts. If Account has an implicit fact, it automatically applies to PremiumAccount.



It is not possible redefine a relationship, only to add additional ones.






Enums

Enums are a special signature.

enum Time {Morning, Noon, Night}





The enum will always have the defined atoms in it. Additionally, the
atom will have an ordering. In this case, Morning will be the first
element, Noon the second, and Night will be the third. You can use enums
in facts and predicates, but you cannot add additional properties to
them.


Tip

If you want to use an enumeration with properties, you can emulate this
by using one and signature extensions.

abstract sig Time {}

one sig Morning, Noon, Night extends Time {
    time: Time
}





You can also use this to make enumerations without a fixed number of
elements, by using lone instead.




Warning

Each enum implicitly imports ordering. The following is invalid:

enum A {a}

enum B {b}

run {some first}





As it is ambiguous whether first should return a or b. If you need to use both an enum inside of a dynamic model, be sure to use a namespace when importing ordering.









          

      

      

    

  

    
      
          
            
  
Sets and Relations


Sets

A set is a collection of unique, unordered elements. All Alloy
expressions use sets of atoms and Relations. All
elements of a set must have the same arity, but can otherwise freely mix
types of elements.

Adding a signature automatically defines the set of all atoms in that
signature. Given

sig Teacher {}
sig Student {
  teacher: Teacher
}





Then the spec recognizes Student as the set of all atoms of type
Student, and likewise with the Teacher signature and the
teacher relationship.

Everything in Alloy is a set. If S1 is a Student atom, then
S1 is the set containing just S1 as an element.

There are also two special sets:


	none is just the empty set. Saying no Set is the same as saying Set = none. See Expressions.


	univ is the set of all atoms in the model. In this example, univ = Student + Teacher.





Note

By default, the analyzer also generates a set of integers for each model, which will appear in univ. This can almost always be ignored in specifications (but see # below).




Set Operators

Set operators can be used to construct new sets from existing ones, for
use in expressions and predicates.


	S1 + S2 is the set of all elements in either S1 or S2
(set union).


	S1 - S2 is the set of all elements in S1 but not S2 (set
difference).


	S1 & S2 is the set of all elements in both S1 and S2 (set
intersection).




S1 = {A, B}
S2 = {B, C}

S1 + S2 = {A, B, C}
S1 - S2 = {A}
S1 & S2 = {B}






-> used as an operator

Given two sets, Set1 -> Set2 is the Cartesian product of the two:
the set of all relations that map any element of Set1 to any element
of Set2.

Set1 = {A, B}
Set2 = {X, Y, Z}

Set1 -> Set2 = {
  A -> X, A -> Y, A -> Z,
  B -> X, B -> Y, B -> Z
}





As with other operators, a standalone atom is the set
containing that atom. So we can write A -> (X + Y) to get
(A -> X + A -> Y).


Tip

univ -> univ is the set of all possible relations in your model.








Integers

Alloy has limited support for integers. To enforce bounded models, the
numerical range is finite. By default, Alloy uses models with 4-bit
signed integers: all integers between -8 and 7. If an arithmetic
operation would cause this to overflow, then the predicate is
automatically declared false. In the Evaluator, however, it will wrap the overflowed number.


Tip

The numerical range can be changed by placing a scope on Int. The number of the scope is the number of bits in the signed integers. For example, if the scope is 5 Int, the model will have all integers between -16 and 15.



All arithmetic operators are over the given model’s numeric range. To
avoid conflict with set and relation operators, the arithmetic operators
are written as Functions:

add[1, 2]
sub[1, 2]
mul[1, 2]
div[3, 2] -- integer divison, drop remainder
rem[1, 2] -- remainder





You can use receiver syntax for this, and write add[1, 2] as
1.add[2]. There are also the following comparison predicates:

1 =< 2
1 < 2
1 > 2
1 >= 2
1 != 2
1 = 2





As there are no corresponding symbols for elements to overload, these
operators are written as infixes.


Warning

Sets of integers have non-intuitive properties and should be used with care.




#

#S is the number of elements in S.




Sets of numbers

For set operations, a set of numbers are treated as a set. For
arithmetic operations, however, a set of numbers is first summed before
applying the operator. This is equivalent to using the sum[]
function.

(1 + 2) >= 3 -- true
(1 + 2) <= 3 -- true
(1 + 2) = 3  -- false
(1 + 2).plus[0] = 3 -- true
(1 + 1).plus[0] = 2 -- false












Relations

Given the following spec

sig Group {}
sig User {
  belongs_to: set Group
}





belongs_to describes a relation between User and Group.
Each individual relation consists of a pair of atoms, the first being
User, the second being Group. We write an individual relation
with ->. One possible model might have

belongs_to = {
  U1 -> G1 +
  U2 -> G1 +
  U2 -> G2
}





Relations do not need to be 1-1: here two users map to G1 and one
user maps to both G1 and G2.


abstract sig Group {}
abstract sig User {
   belongs_to: set Group
}

one sig U1, U2 extends User {}
one sig G1, G2 extends Group {}

fact {
  belongs_to = {
  U1 -> G1 +
  U2 -> G1 +
  U2 -> G2
}
}








[image: ../_images/belongs_to.png]
Relations in Alloy are first class objects, and can be manipulated and
used in expressions. [This assumes you already know the set operations].
For example, we can reverse a relation by adding ~ before it:

~belongs_to = {
  G1 -> U1 +
  G1 -> U2 +
  G2 -> U2
}






The . Operator

The dot (.) operator is the most common relationship operator, and has
several different uses. The dot operator is left-binding: a.b.c is
parsed as (a.b).c, not a.(b.c).


Set.rel

Return every element that elements in Set map to, via rel. This also works for individual atoms.

U1.belongs_to = G1
(U1 + U2).belongs_to = {G1, G2}






Tip

In this case, we can find all groups in the relation with User.belongs_to. However, some relations may mix different types of atoms. In that case univ.~rel is the domain of rel and univ.rel is the range of rel.



For Multirelations, this will return the “tail” of the relation. Eg if rel = A -> B -> C, then A.rel = B -> C.




rel.Set

Writing rel.Set is equivalent to writing Set.~rel. See ~rel.

belongs_to.G1 = {U1, U2}
G1.~belongs_to = {U1, U2}








rel1.rel2

We can use the dot operator with two relations. It returns the inner
product of the two relations. For example,
given

rel1 = {A -> B,         B -> A}
rel2 = {B -> C,
        B -> D,         A -> E}

rel1.rel2 = {
        A -> C,
        A -> D,         B -> E}





In our case with Users and Groups, belongs_to.~belongs_to maps every
User to every other user that shares a group.




[]

rel[elem] is equivalent to writing elem.(rel). It has a lower
precedence than the . operator, which makes it useful for
Multirelations. If we have

sig Light {
   state: Color -> Time
}





Then L.state[C] would be all of the times T where the light L was color C. The equivalent without [] would be C.(L.state).






iden

iden is the relationship mapping every element to itself. If we have
an element a in our model, then (a -> a) in iden.

An example of iden’s usefulness: if we want to say that rel doesn’t
have any cycles, we can say no iden & ^rel.




Additional Operators


Note

You cannot use ~, ^, or * with higher-arity relations.




~rel

As mentioned, ~rel is the reverse of rel.




^ and *

These are the transitive closure relationships. Take the following
example:

sig Node {
  edge: set Node
}





N.edge is the set of all nodes that N connects to.
N.edge.edge is the set of all nodes that an edge of N connects
to. N.edge.edge.edge is the set of all nodes that are an edge of an
edge of N, ad infinitum. If we want every node that is connected to N,
this is called the transitive closure and is written as N.^edge.

^ does not include the original atom unless it’s transitively
reachable! In the above example, N in N.^edge iff the graph has a
cycle containing N. If we want to also include N, use
N.*edge instead.

^ operates on the relationship, so ^edge is also itself a
relationship and can be manipulated like any other. We can write both
~^edge and ^~edge. It also works on arbitrary relationships.
U1.^(belongs_to.~belongs_to) is the set of people that share a group
with U1, or share a group with people who share a group with U1,
ad infinitum.


Warning

By itself *edge will include iden! *edge = ^edge + iden. For best results only use * immediately before joining the closure with another set.








Advanced Operators


<: and :>

<: is domain restriction. Set <: rel is all of the elements in
rel that start with an element in Set. :> is the range
restriction, and works similarly: rel :> Set is all the elements of
rel that end with an element in Set.

This is mostly useful for directly manipulating relations. For example,
given a set S, we can map every element to itself by doing
S <: iden.




++

rel1 ++ rel2 is the union of the two relations, with one exception: if any relations in rel1 that share a “key” with a relation in rel2 are dropped.  Think of it like merging two dictionaries.

Formally speaking, we have

rel1 ++ rel2 = rel1 - (rel2.univ <: rel1) + rel2





Some examples of ++:

(A -> B + A -> C) ++ (A -> A) = (A -> A)
(A -> B + A -> C) ++ (A -> A + A -> C) = (A -> A + A -> C)
(A -> B + A -> C) ++ (C -> A) = (A -> B + A -> C + C -> A)
(A -> B + B -> C) ++ (A -> A) = (A -> A + B -> C)





It’s mostly useful for modeling Time.


Note

When using multirelations the two relations need the same arity, and it overrides based on only the first element in the relations.






Set Comprehensions

Set comprehensions are written as

{x: Set1 | expr[x]}





The expression evaluates to the set of all elements of Set1 where expr[x] is true. expr can be any expression and may be inline. Set comprehensions can be used anywhere a set or set expression is valid.

Set comprehensions can use multiple inputs.

{x: Set1, y: Set2, ... | expr[x,y]}





In this case this comprehension will return relations in Set1 -> Set2.











          

      

      

    

  

    
      
          
            
  
Expressions and Constraints


Expressions

Expressions are anything that returns a number, boolean, or set. Boolean
expressions are also called Constraints.

Information about relational expressions are found in the Sets and Relations chapters. There are two additional constructs that can be used with both boolean and relational
expressions.


See also

Integer expressions




Let

let defines a local value for the purposes of the subexpression.

let x = A + B, y = C + D |
   x + y





In the context of the let expression x + y = (A + B) + (C + D).
let is mostly used to simplify complex expressions and give
meaningful names to intermediate computations.

If writing a boolean expression, you may use a {} instead of |.

let bindings are not recursive. A let binding may not refer to
itself or a future let binding.


Warning

As with predicate parameters, let can shadow a global value. You can use the @ operator to retrieve the global value.






implies - else

When used in conjunction with else, implies acts as a
conditional. p implies A else B returns A if p is true and B if p is
false. p must be a boolean expression.

If A and B are boolean expressions, then this acts as a constraint. The else can be left out if using implies as a constraint. See below for details.






Constraints


Bar expressions

A bar expression is one of the form:

some x: Set |
  expr





In this context, the expression is true iff expr is true. The newline is optional.




Paragraph expressions

If multiple constraints are surrounded with braces, they are all
and-ed together. The following two are equivalent:

expr1 or {
  expr2
  expr3
    ...
}

expr1 or (expr 2 and expr3 and ...)








Constraint Types

All constraints can be inverted with not or !. To say that A is
not a subset of B, you can write A !in B, A not in B,
!(A in B), etc.


Relation Constraints


=

A = B means that both sets of atoms or relations have the exact same
elements. = cannot be used to compare two booleans. Use iff
instead.




in


	A in B means that every element of A is also an element of B.
This is also known as a “subset” relation.


	x in A means that x is an element of the set A.





Note

The above two definitions are equivalent as all atoms are singleton sets: x is the set containing x, so x in A is “the set containing just x is a subset of A”.






size constraints

There are four constraints on the number of elements in a set:


	no A means A is empty.


	some A means A has at least one element.


	one A means A has exactly one element.


	lone A means A is either empty or has exactly one element.




In practice, no and some are considerably more useful than
one and lone.


Note

Relations are each exactly one element, no matter the order of the relation. If a, b, and c are individual atoms, (a -> b -> c) is exactly one element, while (a -> b) + (a -> c) is two.






disj[A, B]

disj[A, B] is the predicate “A and B share no elements in common”.
Any number of arguments can be used, in which case disj is
pairwise-disjoint. This means that disj[A, B, C] is equivalent to
disj[A, B] and disj[B, C] and disj[A, C].






Boolean Constraints

Boolean constraints operate on booleans or predicates. They can be used
to create more complex constraints.

All boolean constraints have two different forms, a symbolic form and an
English form. For example, A && B can also be written A and B.







	word

	symbol





	and

	&&



	or

	||



	not

	!



	implies

	=>



	iff

	<=>






The first three are self-explanatory. The other two are covered below:


implies (=>)

P implies Q is true if Q is true whenever P is true. If P is true
and Q is false, then P implies Q is false. If P is false, then
P implies Q is automatically true. P implies Q else T is true if P and Q are true or if P is false and T is true.

(Consider the statement x > 5 implies x > 3. If we pick x = 4,
then we have false implies true).




iff (<=>)

P iff Q is true if P and Q are both true or both false. Use this for
booleans instead of =.


Tip

xor[A, B] can be written as A <=> !B.








Quantifiers

A quantifier is an expression about the elements of a set. All of
them have the form

some x: A |
  expr





This expression is true if expr is true for any element of the set
of atoms A. As with let, x becomes a valid identifier in the
body of the constraint.

Instead of using a pipe, you can also write it as

some x: Set {
  expr1
  ...
}





In which case it is treated as a standard paragraph expression.

The following quantifiers are available:


	some x: A | expr is true for at least one element in A.


	all x: A | expr is true for every element in A.


	no x: A | expr is false for every element of A.


	[A] one x: A | expr is true for exactly one element of A.


	[A] lone x: A is equivalent to
(one x: A | expr) or (no x: A | expr).




As discussed below, one and lone can have some unintuitive
consequences.


Tip

As with all constraints, A can be any set expression. So you can write some x: (A + B - C).rel, etc.




Multiple Quantifiers

There are two syntaxes to quantify over multiple elements:

-- 1
some x, y, ...: A | expr

-- 2
some x: A, y: B, ... | expr





For case (1) all elements will be drawn from A. For case (2) the
quantifier will be over all possible combinations of elements from A and
B. The two forms can be combined, as in
all x, y: A, z: B, ... | expr.

Elements drawn do not need to be distinct. This means, for example,
that the following is automatically false if A has any elements:

all x, y: A |
  x.rel != y.rel





As we can pick the same element for x and y. If this is not your
intention, there are two ways to fix this:

-- 1
all x, y: A |
  x != y => x.rel != y.rel

-- 2
all disj x, y: A |
  x.rel != y.rel





For case (1) we can still select the same element for x and y;
however, the x != y clause will be false, making the whole clause
true. For case (2), using disj in a quantifier means we cannot
select the same element for two variables.

one and lone behave unintuitively when used in
multiple quantifiers. The following two statements are different:

one f, g: S | P[f, g] -- 1
one f: S | one g: S | P[f, g] -- 2





Constraint (1) is only true if there is exactly one pair f, g that
satisfies predicate P. Constraint (2) says that there’s exactly one f
such that there’s exactly one g. The following truth table will satisfy
clause (2) but not (1):








	f

	g

	P[f, g]





	A

	B

	T



	A

	C

	T



	B

	A

	T



	B

	C

	T



	C

	B

	T



	C

	A

	F






As C is the only one where there is exactly one g that satisfies P[C,
g]. As a rule of thumb, use only some and all when writing
multiple clauses.




Relational Quantifiers

When using a run command, you can define a some quantifier over a relation:

sig Node {
    edge: set Node
}

pred has_self_loop {
    some e: edge | e = ~e

}

run {
    has_self_loop
}





When using a check command, you can define all and no quantifiers over relations:

assert no_self_loops {
        no e: edge | e = ~e
      }

check no_self_loops





You cannot use all or no in a run command or use some in a check command. You cannot use higher-order quantifiers in the Evaluator regardless of the command.













          

      

      

    

  

    
      
          
            
  
Predicates and Functions


Predicates

A predicate is like a programming function that returns a
boolean. While they are a special case of Alloy
functions, they are more fundamental to modeling and addressed first.

Predicates take the form

pred name {
       constraint
}





Once defined, predicates can be used as part of boolean expressions. The
following is a valid spec:

sig A {}

pred at_least_one_a {
  some A
}

pred more_than_one_a {
  at_least_one_a and not one A
}

run more_than_one_a






Warning

Predicates and functions cannot, in the general case, be recursive.
Limited recursion is possible, see
here for more info.




Parameters

Predicates can also take arguments.

pred foo[a: Set1, b: Set2...] {
  expr
}





The predicate is called with foo[x, y], using brackets, not
parens. In the body of the predicate, a and b would have the
corresponding values.


Receiver Syntax

The initial argument to a predicate can be passed in via a . join.
The following two are equivalent:

pred[x, y, z]
x.pred[y, z]












Functions

Alloy functions are equivalent to programming functions. They have the
same structure as predicates, but also return a value:

fun name[a: Set1, b: Set2]: output_type {
  expression
}






Tip

if a function is constant (does not take any parameters), the
analyzer casts it to a constant set. This means if we have a function of parameter

fun foo: A -> B {
    expression
}





Then ^foo is a valid expression.




Overloading

Predicates and functions may be overloaded, as long as it’s unambiguous which function applies. The following is valid:

sig A {}

sig B {}

pred foo[a: A] { --1
  a in A
}

pred foo[b: B] { --2
  b in B
}

run {some a: A | foo[a]}





As when foo is called, it’s unambiguous whether it means (1) or (2). If we instead replaced sig B with sig B extends A, then it’s ambiguous and the call is invalid.

Overloading can happen if you import the same parameterized module twice.For example, given the following:

open util/ordering[A]
open util/ordering[B]

sig A, B {}
run {some first}





It is unclear whether first applies to A or B. To fix this, use Namespaced imports:

open util/ordering[A] as u1
open util/ordering[B] as u2

sig A, B {}
run {some u2/first}








Parameter Overrides

The parameters of a function (or predicate) can shadow a global value.
In this case, you can retrieve the original global value by using
@val.

sig A {}

pred f[A: univ, b: univ] {
  b in A  -- function param
  b in @A -- global signature
}










Facts

A fact has the same form as a global predicate:

fact name {
  constraint
}





A fact is always considered true by the Analyzer. Any models that
would violate the fact are discarded instead of checked. This means that
if a potential model both violates an assertion and a fact, it is not
considered a counterexample.

sig A {}

-- This has a counterexample
check {no A}

-- Unless we add this fact
fact {no A}






Tip

For facts, the name is optional. In addition, the name can be a string. So this is a valid fact:

fact "no cycles" {
  all n: Node | n not in n.^edge
}








Implicit Facts

You can write a fact as part of a signature. The implicit fact goes
after the signature definition and relations. Inside of an implicit fact,
you can get the current atom with this. Fields are automatically expanded in the implicit fact to this.field.

sig Node {
  edge: set Node
} {
  this not in edge
}





This means you cannot apply the relation to another atom
of the same signature inside the implicit fact. You can access the
original relation by using the @ operator:

-- undirected graphs only
sig Node {
  , edge: set Node
}
{
  all link: edge | this in link.edge -- invalid
  all link: edge | this in link.@edge -- valid
}










Macros

A macro is a similar to a predicate or function, except it is expanded before runtime. For this reason, macros can be used as part of signature fields. Parameters to macros also don’t need to be given types, so can accept arbitrary signatures and even boolean constraints. Macros are defined with let in the top scope.

let selfrel[Sig] = { Sig -> Sig }
let many[Sig] = { some Sig and not one Sig }

sig A {
  rel: selfrel[A]
}

run {many[A]}





See here [http://alloytools.org/quickguide/macro.html] for more information.







          

      

      

    

  

    
      
          
            
  
Commands

A command is what actually runs the analyzer. It can either find
models that satisfy your specification, or counterexamples to given
properties.

By default, the analyzer will run the top command in the file. A
specific command can be run under the Execute menu option.


run

run tells the analyzer to find a matching example of the spec.


run pred

Find examples where pred is true. If no examples match, the analyzer
will suggest the predicate is inconsistent (see unsat core). The
predicate may be consistent if the scope is off.

sig Node {
    edge: set Node
}

pred self_loop[n: Node] {
  n in n.edge
}

pred all_self_loop {
  all n: Node | self_loop[n]
}

run all_self_loop





The analyzer will title the command as the predicate.

[image: ../_images/command.png]



run {constraint}

Finds an example satisfying the ad-hoc constraint in the braces.

// some node with a self loop
run {some n: Node | self_loop[n]}






Tip

The analyzer will title the command run${num}. You can give the command a name by prepending the run with name::



some_self_loop:run {some n: Node | self_loop[n]}










check

check tells the Analyzer to find a counterexample to a given
constraint. You can use it to check that your specification behaves as
you expect it to.

Unlike with run commands, check uses assertions:

assert no_self_loops {
    no n: Node | self_loop[n]
}

check no_self_loops





Asserts may be used in check commands but not run commands.
Assertions may not be called by other predicates or assertions.

You can also call check with an ad-hoc constraint:

check {no n: Node | self_loop[n]}





check can also be given a named command.




Scopes

All alloy models are bounded: they must have a maximum possible
size. If not specified, the analyzer will assume that there may be up to
three of each top-level signature and any number of relations. This is
called the scope, and can be changed for each command.

Given the following spec:

sig A {}
sig B {}





We can write the following scopes:


	run {} for 5: Analyzer will look for models with up to five
instances of each A and B.


	run {} for 5 but 2 A: Analyzer will look for models with up to
two instances of A.


	run {} for 5 but exactly 2 A: Analyzer will only look for models
with exactly two A. The exact scope may be higher than the
general scope.


	run {} for 5 but 2 A, 3 B: Places scopes on A and B.




If you are placing scopes on all of the signatures, the for N except
is unnecessary: the last command can be written as
run {} for 2 A, 3 B.


Tip

When using Arithmetic Operators, you can specify Int like any other signature:

run foo for 3 Int








Note

You cannot place scopes on relations. Instead, use a predicate.

sig A {
  rel: A
}

run {#rel = 2}








Scopes on Subtypes

Special scopes may be placed on extensional subtypes. The following is valid:

sig Plant {}

sig Tree extends Plant {}
sig Grass extends Plant {}

run {} for 4 Plant, exactly 2 Tree





Grass does not need to be scoped, as it is considered part of
Plant. The maximum number of atoms for a subtype is either it or its
parent’s scope, whichever is lower. The parent scope is shared across
all children. In this command, there are a maximum of four Plants,
exactly two of which will be Tree atoms. Therefore there may be at
most two Grass atoms.

In contrast, special scopes may not be placed on subset types. The following is invalid:

sig Plant {}

sig Seedling in Plant {}

run {} for 4 Plant, exactly 2 Seedling





Since Seedling is a subset type, it may not have a scope. If you
need to scope on a subtype, use a constraint:

run {#Seedling = 2} for 4 Plant













          

      

      

    

  

    
      
          
            
  
Modules

Alloy modules are similar to programming languages and act as the namespaces. Alloy comes with a standard library of utility modules.


Simple Modules

open util/relation as r





Imports must be at the top of the file. Modules may import new signatures into the spec.

Modules can be imported multiple times under different namespaces.


Namespaces

A module can be namespaced by importing as a name. Namespaces are accessed with /. This is also called a qualified import.

open util/relation as r

-- later

r/dom










Parameterized Modules

A parameterized module is “generic”: its functions and predicates are defined for some arbitrary signature. When you import a parameterized module, you must pass in a signature. Its functions and predicates are then specialized to be defined for that signature.

open util/ordering[A]

sig A {}

run {some first} -- returns an A atom





Normally ord/first returns an abstract elem. By parameterizing the module with A, the function now returns an A atom.

The input must be a full signature and not a subset of one.

A parameterized module can be imported multiple times using Namespaces.


Note

The following built-in modules are parameterized: ordering, time, graph, and sequence.






Creating Modules

The syntax for a module is

module name





At the beginning of the file.


Private

Any module predicate, function, and signature can be preceded by private, which means it will not be imported into other modules.

module name

private sig A {}








Creating Parameterized Modules

module name[sig]

-- predicates and functions should use sig
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Analyzer

The Alloy Analyzer is the tool that actually checks your spec.


Configuring the Analyzer

The analyzer converts the model into a SAT expression to solve. Some of the options are configurable. By default you should not need to change any of these- most performance issues are better solved by improving the spec itself. The following all affect the runtime of the analyzer. All of these are under the “Options” toolbar of the IDE:


	Allow Warnings: When “no”, the analyzer will halt if the model has any warnings. Warnings usually, but not always, correspond to errors in the spec.


	Maximum Memory: How much RAM the analyzer is allowed to use when solving.


	Solver: The SAT solver to use for finding the model. Different solvers may have different performance on different specs. The SAT model and Kodkod model can also be output to a temporary file here.  There are additional special options for MiniSat with Unsat Core, below.


	Skolem Depth: see below


	Recursion Depth: see below


	Record the Kodkod input/output: when true, the Kodkod output for the run can be seen by clicking the Predicate link in the output.




[image: ../_images/kodkod.png]

	Prevent Overflows: If an arithmetic operation would overflow the model, the predicate is treated as false.





Recursion Depth

Predicates and functions are normally not recursive- they may not call
themselves. The following is an invalid predicate:

sig Node {
    edge: set Node
}

fact {no iden & ^edge}

pred binary_tree[n: Node] {
    #n.edge <= 2
    all child: n.edge |
    // recursive call
        binary_tree[child]
}

run {some n: Node | binary_tree[n]}





This is invalid because all Alloy models must be bound, and recursive
calls can lead to an unbound model. Normally you should restructure your
model to not need a recursive call. If you must have a recursive
predicate or function, you can set the recursion depth to a maximum
of 3.

The recursion depth is treated as a “fact”: the analyzer will not look
for models with a greater recursion depth, even if it would lead to a
valid example or counterexample.


Warning

Increasing the recursion depth will slow down your spec.






Unsat Core

By default Alloy is packaged with Minisat [http://minisat.se/],
which also has an Unsat Core. When “MiniSat with Unsat Core” is
selected as the solver, the analyzer can isolate which constraints
prevent the analyzer from finding a counter/example. See
here [http://alloytools.org/quickguide/unsat.html] for more
information.


Note

By default, the Windows version of Alloy does not come with MiniSAT.




Warning

The “Core Granularity” option is not strictly increasing in terms of information: a slower setting might, in some circumstances, lead to the core providing less information. Given the following model:

sig Node {
    edge: some Node
}

fact {some Node}

run {no edge}





All granularity settings will highlight three formulas except for
“expand quantifiers”, which will only highlight two. However, all three
constraints are required to make the predicate inconsistent.











          

      

      

    

  

    
      
          
            
  
Visualizer

Given the following model

abstract sig Object {}

sig File extends Object {}

sig Dir extends Object {contents: set Object}
one sig Root extends Dir { }


fact {
 Object in Root.*contents
}

assert RootTop {
 no o: Object | Root in o.contents
}
check RootTop // This assertion should produce a counterexample







	::

	
	fact “demo” {

	
	let unroot = Dir - Root |

	contents = Root -> unroot + unroot -> Dir + ((Dir - Root) -> File)









}








One counterexample to RootTop is a directory that contains the root. In the Visualizer, this looks like

[image: ../_images/visualizer.png]
This page will cover all functionality of the visualizer.


Attention

The XML for this example can be downloaded here.




Tip

The model visualizer names atoms like Atom$0, Atom$1, etc. This can sometimes be hard to follow in the visualizer. To give things qualified names, instead write:

abstract sig Base {
 -- relations here
}

lone A, B, C, D extends Base {}

run {} for 2 Base





This will guarantee the values have better names.




Menu Bar Functions


File


	Open/Export To: Visualizations can either be exported to a
graphviz diagram or to XML. Saved XML can be reloaded into the
visualizer with the open option without needing to first reevaluate
the spec.







Instance


	Show Next Solution/Next: Returns another solution that satisfies the model (or is a valid counterexample). The evaluator can only move forward in solutions, not backwards. If you would like to see a previous solution, you will need to rerun the model.







Themes

See Reusing Themes.






Output options

The standard view is the visualizer. The other three options are


	Text





seq/Int={0, 1, 2, 3}
String={}
none={}
this/Object={Dir$0, File$0, Root$0}
this/Dir={Dir$0, Root$0}
this/Dir<:contents={Dir$0->Dir$0, Dir$0->File$0, Dir$0->Root$0, Root$0->Dir$0}
this/Root={Root$0}
this/File={File$0}
skolem $RootTop_o={Dir$0}









	Tree

[image: ../_images/tree.png]


	Table





┌────────┬────────┐
│this/Dir│contents│
├────────┼────────┤
│Dir⁰    │Dir⁰    │
│        ├────────┤
│        │File⁰   │
│        ├────────┤
│        │Root⁰   │
├────────┼────────┤
│Root⁰   │Dir⁰    │
└────────┴────────┘

┌───────────┬────┬─────┬─────┐⁻¹
│this/Object│Dir⁰│File⁰│Root⁰│
└───────────┴────┴─────┴─────┘









Warning

The table view shows the atoms in a human readable form, for example, writing Root⁰ instead of Root$0. In the evaluator, however, you need to write Root$0.




Themes

See Themes.




Magic Layout

Automatically generates an appropriate theme for the visualization.






Evaluator

The evaluator can be used to run arbitrary commands against the existing
model. It cannot create new signatures, only investigate the current
signatures and relations you currently have. You cannot define a new
functions or predicates in the evaluator, only evaluate Expressions.

[image: ../_images/evaluator.png]

Note

While the evaluator can evaluate most expressions, it does not have the full capacity of the alloy analyzer. For example, polymorphic domain restriction will not work. Additionally, integer overflow will wrap instead of raise an error.






Projection

Projections break a complex model into multiple subviews.  Instead of showing relations from the projected signature, each relation will be represented as a text label on the corresponding targets of the relation.







          

      

      

    

  

    
      
          
            
  
Themes

Diagrams produced in the Visualizer can be themed. Options are:


Note

All options will not be changed until you click the “Apply” button.




General Graph Settings


	Use Original Atom Names: Instead of showing atoms as Atom¹, the visualizer will show them as Atom$1. Default False.


	Hide Private Sigs/Relations: Hides signatures and relations that are internal to an imported module. Default True.


	Hide Meta Sigs/Relations: ???







Types and Sets

In this case, “set” refers to any nodes that are important to the visualizer, such as the results of Commands. All settings are hierarchical: any setting labelled inherit will use the same setting as the parent type/set. Settings for sets override settings for signatures.

The following settings are universal to all nodes:


	Color, Shape, and Border.


	Name (to the left of color): What to call the nodes. This does not effect the evaluator or tree, text, and table views.


	Show: Whether or not the node is visible in the visualization at all. Default True.


	Hide Unconnected Nodes: If a node doesn’t have any relation to any other node, hide the node. Default True.




The following are specific to signatures:


	Number Nodes: Nodes with the same name and same type are suffixed with a number.


	Project over this Sig: See Projection.




The following are specific to sets:


	Show as Labels: Set membership is shown as a text label on the matching atoms.


	Show in Relation Attributes: If the element of the set appears in another node’s textual attributes, also list that it belongs to the set.







Relations

For all of these options, we assume the relation is rel: A -> B


	Show as Arcs: Represent the relationship as an arrow from A to B. Default True.


	Show as Attributes: Represents the relationship as the label rel: B on node A. A relationship can be shown as both arcs and attributes at the same time. Default False.


	Influence Layout: If True, the visualizer will try to account for the arrows when laying out the node graph. If False, the visualizer will first lay out the graph, and then draw the relation. Default True.


	Weight: The visualizer will try to minimize the weights of the larger arrows first.


	Layout Backwards: Layout the graph as if the relation was B -> A. The final layout will still show the arrow as A -> B. Default False.


	Merge Arrows: If True, the relationship A -> B + B -> A with be represented as a single double-sided arrow. If false, the relationship is represented as two single-sided arrows. Default True.





Reusing Themes

Themes can be saved and loaded under the theme top menu bar. Themes can also be reset here.









          

      

      

    

  

    
      
          
            
  
Markdown

Thanks to Peter Kriens, Alloy supports Markdown syntax. Files written in Alloy Markdown have an .md extension, just like regular Markdown files. The Alloy Analyzer can read in Markdown files the same way it reads in .als files.

For an example of an Alloy Markdown file, see Peter Kriens’s Dining Philosophers [https://github.com/pkriens/pkriens.github.io/blob/master/philosophers.md].


Header

A Markdown Alloy file must start with a YAML header: three dashes on the first line, followed by fields and values in YAML format, followed by three more dashes. For example:


---
title: Dining Philosophers
---











Alloy sections

After the YAML header, the Alloy parser interprets all text as Markdown. To start an Alloy section, use fenced code blocks [https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#fenced-code-blocks] with alloy as the language identifier. For example:


# Literate Programming

Let us change our traditional attitude to the construction of programs: Instead
of imagining that our main task is to instruct a computer what to do, let us
concentrate rather on explaining to human beings **what** we want a computer to do.

```alloy
sig Foo {} // this is Alloy syntax
```

If you find that you're spending almost _all_ your time on theory, start turning
_some_ attention to practical things; it will improve your theories. If you find
that you're spending almost all your time on practice, start turning some attention
to theoretical things; it will improve your practice.











GitHub Pages support

The YAML header can be used in conjunction with GitHub Pages [https://pages.github.com/]. GitHub Pages allow you to maintain a website via Github, the YAML header is then used to encode metadata information such as title and layout. This example website [https://www.aqute.biz/philosophers.html] shows the dining philosophers example rendered using Jekyll [https://jekyllrb.com/docs/github-pages/] and served from GitHub Pages.







          

      

      

    

  

    
      
          
            
  
Modules



	boolean
	Functions





	graph
	Functions

	Predicates





	ordering
	Functions

	Predicates





	relation
	Functions

	Predicates





	ternary

	time
	Macros













          

      

      

    

  

    
      
          
            
  
boolean

Emulates boolean variables by creating True and False atoms.

-- module definition
module util/boolean

abstract sig Bool {}
one sig True, False extends Bool {}

pred isTrue[b: Bool] { b in True }

pred isFalse[b: Bool] { b in False }





In our code:

-- our code
open util/boolean

sig Account {
  premium: Bool
}





Booleans created in this matter are not “true” booleans and cannot be used as part of regular Constraints, IE you cannot do bool1 && bool2. Instead you must use the dedicated boolean predicates, below. As such, boolean should be considered a proof-of-concept and is generally not recommended for use in production specs. You should instead represent booleans using subtyping.


Functions

All of the following have expected logic, but return Bool atoms:


	Not


	And


	Or


	Xor


	Nand


	Nor




So to emulate bool1 && bool2, write bool1.And[bool2].isTrue.







          

      

      

    

  

    
      
          
            
  
graph

Graph provides predicates on relations over a parameterized signature.

open util/graph[Node]

sig Node {
  edge: set Node
}

run {
  dag[edge]
}





Notice that graph is parameterized on the signature, but the predicate takes in a relation. This is so that you can apply multiple predicates to multiple different relations, or different subsets of the same relation. The graph module uses some specific terminology:

This means that in a completely unconnected graph, every node is both a root and a leaf.


Functions


	
fun roots[r: node-> node]

	
	Return type

	set Node





Returns the set of nodes that are not connected to by any other node.


Warning

this is not the same meaning of root as in the rootedAt predicate! For the predicate, a root is a node that transitively covers the whole graph. Interally, util/graph uses rootedAt and not roots.








	
fun leaves[r: node-> node]

	
	Return type

	set Node





Returns the set of nodes that do not connect to any other node.


Note

If r is empty, roots[r] = leaves[r] = Node. If r is undirected or contains enough self loops, roots[r] = leaves[r] =  none.








	
fun innerNodes[r: node-> node]

	
	Returns

	All nodes that aren’t leaves



	Return type

	set Node












Predicates


	
pred undirected [r: node->node]

	r is symmetric.






	
pred noSelfLoops[r: node->node]

	r is irreflexive.






	
pred weaklyConnected[r: node->node]

	For any two nodes A and B, there is a path from A to B or a path from B to A. The path may not necessarily be bidirectional.






	
pred stronglyConnected[r: node->node]

	For any two nodes A and B, there is a path from A to B and a path from B to A.






	
pred rootedAt[r: node->node, root: node]

	All nodes are reachable from root.


Warning

this is not the same meaning of root as in the roots function! For the function, a root is a node no node connects to. Interally, util/graph uses rootedAt and not roots.








	
pred ring [r: node->node]

	r forms a single cycle.






	
pred dag [r: node->node]

	r is a dag: there are no self-loops in the transitive closure.






	
pred forest [r: node->node]

	r is a dag and every node has at most one parent.






	
pred tree [r: node->node]

	r is a forest with a single root node.






	
pred treeRootedAt[r: node->node, root: node]

	r is a tree with node root.











          

      

      

    

  

    
      
          
            
  
ordering


Ordering places an ordering on the parameterized signature.




open util/ordering[A]

sig A {}

run {
  some first -- first in ordering
  some last  -- last in ordering
  first.lt[last]
}





ordering can only be instantiated once per signature. You can, however, call it for two different signatures:

open util/module[Thing1] as u1
open util/module[Thing2] as u2

sig Thing1 {}
sig Thing2 {}






Warning

ordering forces the signature to be exact. This means that the following model has no instances:

open util/ordering[S]

sig S {}

run {#S = 2} for 3





In particular, be careful when using ordering as part of an assertion: the assertion may pass because of the implicit constraint!




See also

Module time


Adds additional convenience macros for the most common use case of ordering.




Sequences


For writing ordered relations vs placing top-level ordering on signatures.







Functions


	
fun first

	
	Returns

	The first element of the ordering



	Return type

	elem



	See Also

	last










	
fun prev

	
	Return type

	elem -> elem



	See Also

	next





Returns the relation mapping each element to its previous element. This means it can be used as any other kind of relation:

fun is_first[e: elem] {
  no e.prev
}










	
fun prevs[e]

	
	Returns

	All elements before e, excluding e.



	Return type

	elem



	See Also

	nexts










	
fun smaller[e1, e2: elem]

	
	Returns

	the element that comes first in the ordering



	See Also

	larger










	
fun min[es: set elem]

	
	Returns

	The smallest element in es, or the empty set if es is empty



	Return type

	lone elem



	See Also

	max












Predicates


	
pred lt[e1, e2: elem]

	
	See Also

	gt, lte, gte





True iff e1 in prevs[e2].











          

      

      

    

  

    
      
          
            
  
relation

All functions and predicates in this module apply to any binary relation. univ is the set of all atoms in the model.


Functions


	
fun dom[r: univ->univ]

	
	Return type

	set univ





Returns the domain of r. Equivalent to univ.~r.






	
fun ran[r: univ->univ]

	
	Return type

	set univ





Returns the range of r. Equivalent to univ.r.








Predicates


	
pred total[r: univ->univ, s: set]

	True iff every element of s appears in dom[r].






	
pred functional[r: univ->univ, s: set univ]

	True iff every element of s appears at most once in the left-relations of r.






	
pred function[r: univ->univ, s: set univ]

	True iff every element of s appears exactly once in the left-relations of r.






	
pred surjective[r: univ->univ, s: set univ]

	True iff s in ran[r].






	
pred injective[r: univ->univ, s: set univ]

	True iff no two elements of dom[r] map to the same element in s.






	
pred bijective[r: univ->univ, s: set univ]

	True iff every element of s is mapped to by exactly one relation in r. This is equivalent to being both injective and surjective. There may be relations that map to elements outside of s.






	
pred bijection[r: univ->univ, d, c: set univ]

	True iff exactly r bijects d to c.






	
pred reflexive[r: univ -> univ, s: set univ]

	r maps every element of s to itself.






	
pred irreflexive[r: univ -> univ]

	r does not map any element to itself.






	
pred symmetric[r: univ -> univ]

	A -> B in r implies B -> A in r






	
pred antisymmetric[r: univ -> univ]

	A -> B in r implies B -> A notin r. This is stronger than not symmetric: no subset of r can be symmetric either.






	
pred transitive[r: univ -> univ]

	A -> B in r and B - > C in r implies A -> C in r






	
pred acyclic[r: univ->univ, s: set univ]

	r has no cycles that have elements of s.






	
pred complete[r: univ->univ, s: univ]

	all x,y:s | (x!=y => x->y in (r + ~r))






	
pred preorder[r: univ -> univ, s: set univ]

	reflexive[r, s] and transitive[r]






	
pred equivalence[r: univ->univ, s: set univ]

	r is reflexive, transitive, and symmetric over s.






	
pred partialOrder[r: univ -> univ, s: set univ]

	r is a partial order over the set s.






	
pred totalOrder[r: univ -> univ, s: set univ]

	r is a total order over the set s.











          

      

      

    

  

    
      
          
            
  
ternary

util/ternary provides utility functions for working with 3-arity Multirelations. All functions return either an element in the relation or a new transformed relation.


util/ternary





	f

	f[a -> b -> c]





	dom

	a



	mid

	b



	ran

	c



	select12

	a -> b



	select13

	a -> c



	select23

	b -> c



	flip12

	b -> a -> c



	flip13

	c -> b -> a



	flip23

	a -> c -> b










          

      

      

    

  

    
      
          
            
  
time

Automatically imports an ordered Time signature to your spec.


Warning

Time internally uses the ordering module. This means that the signature is forced to be exact.




See also

Module ordering




Macros


	
let dynamic[x]

	
	Arguments

	
	x (sig) – any signature.






	Expands to

	x one -> Time





dynamic can be used as part of a signature definition:

open util/time

abstract sig Color {}
            one sig Red, Green, Yellow extends Color {}

sig Light {
  , state: dynamic[Color]
}





At every Time, every Light will have exactly one color.






	
let dynamicSet[x]

	
	Arguments

	
	x (sig) – any signature.






	Expands to

	x -> Time





Equivalent to dynamic, except that any number of elements can belong to any given time:

open util/time

sig Keys {}

one sig Keyboard {
  pressed: dynamicSet[Keys]
}















          

      

      

    

  

    
      
          
            
  
Techniques



	Boolean Fields
	Subtyping





	Dynamic Models
	Changing Object Signature

	Time Signatures

	Common Issues

	Limitations













          

      

      

    

  

    
      
          
            
  
Boolean Fields

Often software properties are expressed as booleans, either true or false.  But Alloy doesn’t have a native boolean type. There are two ways to emulate this.

For this example we want something akin to

sig Account {
  premium: bool -- invalid, not a real type
}






Subtyping

Using in subtypes is the standard way to model booleans:

sig Account {}
sig PremiumAccount in Account {}





Then the boolean can be tested with a in PremiumAccount. This method has a number of advantages:


	PremiumAccount and Account - PremiumAccount can be used in the signatures of other fields.


	Premium accounts can have additional fields.


	You can create a custom theme for premium accounts.


	The analyzer will generally be faster.





lone fields

Booleans can also be represented using lone:

one sig Premium {}
sig Account {
  , premium: lone Premium
}





Then the boolean can be tested with some a.premium, and the set of all premium accounts is premium.Premium.  Using lone is somewhat simpler than using a subtype, but it’s less flexible overall, and the boolean cannot be used in the fields of other signatures.




The Boolean module

If subtyping is insufficient, you can also use the boolean module. This is generlaly not recommended.









          

      

      

    

  

    
      
          
            
  
Dynamic Models

A dynamic model represents something changing over time. Alloy does not have a first-class notion of time, and dynamics must be encoded as part of the relationships. This is normally done by placing an ordering on some signature, which then used to emulate time. There are several common ways of doing this.


See also

time


A module with some utility macros to better model time.







Changing Object Signature

When only one entity is changing and there is only one instance of the signature to consider, we can place the ordering on the signature itself. Then each atom of that signature represents the state of the entity at a different point in time.


Full spec downloadable here

open util/ordering[Light] as ord

abstract sig Color {}
one sig Red, Yellow, Green extends Color {}

sig Light {
  color: Color
}







While there are multiple Light atoms, they all represent the same physical “traffic light”, just at different points in time.

The dynamic model is modeled by a state change predicate, which relates each light to the next light in the sequence.


Full spec downloadable here

pred change_light[l: Light] {

  let l' = l.(ord/next) {
    l.color = Red => l'.color = Green
    l.color = Green => l'.color = Yellow
    l.color = Yellow => l'.color = Red
  }

}







Conventionally ordering is not namespaced. We do it here to make the imported functions clearer.


Traces

A trace is a fact that describes how the system will evolve, by constraining “valid models” to ones where the system evolves properly.


Full spec downloadable here

fact Trace {
  ord/first.color = Red

  all l: Light - ord/last |
    change_light[l]
}







first and last are from the ordering module. This sets the first light to red and every subsequent light to the next color in the chain.


Note

We write Light - last because no last.next, so the predicate would be false.








Time Signatures

For more complex specifications we use a Time signature. This is useful if we have multiple things that are changing or multiple properties that can change. The ordering is placed on Time and the signature fields are all related to that time.


Full spec downloadable here

open util/ordering[Time]

sig Time {}








Representing Boolean Properties

If the changing value is a boolean, the best way to represent that is to have a field that is set Time, which represents the times where that field is true:


Full spec downloadable here

sig Key {
  pressed: set Time
}

pred press[k: Key, t: Time] {
  t not in k.pressed
  t.next in k.pressed
}

pred release[k: Key, t: Time] {
  t in k.pressed
  t.next not in k.pressed
}

pred changed[k: Key, t: Time] {
  press[k, t] or release[k, t]
}







We will assume that only one key can be pressed or released at a given time. This means that the trace must specify that some key changes and also that no other key changes.


Full spec downloadable here

fact Trace {
  no first.~pressed
  all t: Time - last |
    some k: Key {
      changed[k, t]
      all k': Key - k |
        not changed[k, t]
    }
}








Note

We could have instead written it this way, using one instad of some:

all t: Time - last |
  one k: Key |
    changed[k, t]





Which would have enforced that no other keys changed by default. Using one in these contexts can be error-prone, so it’s avoided for the purposes of this page.



Conventionally, state-change predicates are written to take two time parameters, where the trace then passes in both t and t.next.

pred release[k: Key, t, t': Time] {
  t in k.pressed
  t' not in k.pressed
}








Representing Arbitrary Properties

Information beyond booleans can be encoded with Multirelations.


Full spec downloadable here

open util/ordering[Time]

sig Time {}

sig User {
  -- current place in time
  , at: Page one -> Time

  -- all visited pages
  , history: Page -> Time
}







Writing Page one -> Time indicates that for every Person and Time, there is exactly one page. Writing Page -> Time also any number of pages per person/time.


Note

There’s no innate reason why we use Page -> Time instead of Time -> Page. However, making Time the end of the multirelation is conventional.




Full spec downloadable here

sig Page {
  -- pages reachable from this page
  link: set Page
}

pred goto[u: User, p: Page, t, t': Time] {
  -- valid page to change to
  p in u.at.t.link

  -- change pages
  p = u.at.t'

  -- save new page in history
  u.history.t' = u.history.t + p
}







When using multirelations of form rel = A -> B -> Time, we get the value of b at time t with a.rel.t


Full spec downloadable here

pred stay[u: User, t, t': Time] {
  u.at.t' = u.at.t
  u.history.t' = u.history.t
}







stay is a “stuttering” predicate which makes it valid for a user to not change at the next time step. Without it goto would have to be true for every single user at every time in the trace.


Full spec downloadable here

fact trace {
  -- everybody starts with their initial page in history
  at.first = history.first 
  all t: Time - last |
    let t' = t.next {
      all u: User |
        u.stay[t, t'] or
        some p: Page | u.goto[p, t, t']
    }
}












Common Issues


Incomplete Trace

The trace must fully cover what happens to all dynamic signatures. If not, weird things happen. Consider the following alternate trace for the browsing model:

fact Trace {
  at.first = history.first -- everybody starts with their initial page in history
  all t: Time - last |
    let t' = t.next {
      one u: User |
        u.stay[t, t'] or
        some p: Page | u.goto[p, t, t']
    }
}





This is true iff exactly one User either stays or goes to a valid page. This allows them to do anything that’s not covered by the two predicates. A user may go to an unlinked page, or stay on the same page but change their history to include a page they never visited.




“No Models Found”

ordering implicity makes the ordered signature exact and this cannot be overridden. If a dynamic spec does not exist, it’s likely due to this.

open util/ordering[State]

sig State {}

run {#State = 2} -- no models










Limitations

There are some limitations to what we can model in a dynamic system.


	Alloy cannot tell if a system has deadlocked. A deadlock is when there is no valid next state as part of the trace. If the trace is encoded as a fact, then the entire model is discarded. If the trace is encoded as a predicate, Alloy will provide any model that doesn’t match the trace as a counterexample.


	Alloy cannot test that some property is guaranteed to happen in infinite time, aka liveness.


	Alloy cannot emulate fair dynamic systems.
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